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A B S T R A C T

Objective: The wide usability of deformable image registration (DIR) deems the process of quality assurance 
important for a reliable clinical translation. Our work mainly aimed to compare the performances of four DIR 
software, in terms of voxel mapping accuracy quantified through target registration error (TRE), and its organ- 
wise correlation with Dice similarity coefficient (DSC), a widely used segmentation metric.
Methods: CT scans were taken for one static scenario and four deformation scenarios simulated using an in-house 
deformable anthropomorphic pelvis phantom. Their CT numbers were overridden based on actual patient scan, 
and these overridden scans were used as input images in this study. Four DIR software were tested: RayStation 
v10B, Velocity v4.1, Slicer, and Plastimatch. Multiple DIRs were performed for each software, using different 
algorithm options or parameters. The TRE was quantified by calculating the difference between the true and 
mapped marker positions. Subsequently, Pearson correlation tests were done to examine the correlation between 
DSC and mean TRE, separately for bladder, prostate, rectum and all organs combined. Similar analyses were 
conducted for prostate alone, to gain more insights regarding a homogeneous medium. Additionally, DSC was 
used to predict whether the mean TRE exceeded 3 mm. The classification performance was assessed using ac
curacy, precision, recall, F1-score, specificity and area under the Receiver Operating Characteristic curve (AUC).
Results: Among the four software tested, RayStation achieved the lowest mean TRE for all deformation scenarios, 
with values between 1.48 mm and 3.06 mm. Pearson correlation tests revealed an exceptionally strong negative 
correlation between DSC and mean TRE for SlicerElastix, where the correlation coefficients ranged from − 0.901 
to − 0.987. In line with the strongest correlation found, SlicerElastix achieved the highest classification perfor
mance scores overall. For all three organs, the scores at their corresponding best DSC threshold were mostly 
higher than 0.80, and the AUCs were close to 1.
Conclusion: In short, this work quantified and compared four DIR software based on the voxel mapping accuracy 
as well as its correlation with DSC, in the major organs in prostate radiotherapy.

Introduction

The importance of deformable image registration (DIR) in the 
radiotherapy (RT) community is irrefutable, especially due to its high 
applicability in adaptive radiotherapy (ART). Over the years, DIR al
gorithms have seen a steady evolution, giving rise to a wide variety 
available for use in RT and in medical physics field in general. A typical 
DIR algorithm consists of a transformation model, a similarity metric 
and an optimiser. Based on the transformation models, two main classes 
have been defined, namely, parametric and non-parametric [1]. A 

parametric algorithm uses a limited number of control points for the 
deformation, whereas a non-parametric algorithm involves every single 
voxel.

Free-form deformation (FFD) is a parametric method that is often 
associated with a B-spline transformation model in the context of 
medical image analysis [2]. In this model, a mesh of control points is 
overlaid onto the moving image, and each control point is deformed 
based on the B-spline functions. As the B-spline functions limit the in
fluence of deforming a control point to only its local neighbourhood, this 
model is able to provide a localized deformation [3]. In such a model, 
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the control points are important parameters, as the mesh resolution (i.e. 
the control point spacing) determines the extent and degrees of freedom 
for the deformation [4]. Depending on the situation, regularization 
could also be done on the FFD method by imposing task-specific con
straints, including topology preservation, volume preservation and ri
gidity constraints [2].

Demons algorithm, which is commonly used due to its remarkable 
speed [5], falls into the non-parametric category. The idea of this al
gorithm originated from the concept of Maxwell’s demons, which was 
introduced to address a paradox in thermodynamics [6]. From the 
perspective of image registration, an object boundary in a static image is 
analogous to a semi-permeable membrane, where “demons” are scat
tered on it. These demons act as effectors to “filter” the voxels of another 
image, by classifying them as either inside or outside the object 
boundary. The image to be deformed is considered a deformable grid, 
whose grid vertices correspond to the image voxels. This model is coined 
the diffusing model, as the deformable grid is seen to be diffusing 
through the object boundary in the static image, by the force of demons. 
For regularization purpose, a Gaussian filter is applied on the resulting 
deformation vector field (DVF) at each iteration. This filter serves to 
smoothen the DVF and preserve the geometric continuity of the 
deformed image [7].

Apart from the two algorithms described above, there are many more 
out there being constantly introduced and adapted to meet the demands 
of the community from various aspects (e.g. deformation complexity 
needed and computational efficiency). Different algorithms perform 
well in different aspects, and it is unlikely to find a one-size-fits-all al
gorithm that is suitable for use in all clinical situations.

For the application of DIR in dose accumulation, i.e., deformable 
dose accumulation (DDA), assessment of voxel mapping accuracy is 
necessary. This could be done by evaluating the target registration error 
(TRE) based on landmarks. Comparison of performance among several 
algorithms using TRE has been widely reported by the extensive body of 
work found in the literature. These include multiple sites, such as head 
and neck [8–11], liver [12–14], thoracic [14–17] and prostate [14,18] 
sites. Thus far, however, none has attempted to assess the organ-wise 
correlation between segmentation metrics and voxel mapping accu
racy for different algorithms.

Considering the tedious nature of evaluating voxel mapping accu
racy, not to mention that it is not always possible to be carried out 
(subject to the availability of anatomical landmarks or phantoms), it 
would be advantageous to discover any previously unknown link be
tween the more easily obtainable segmentation metrics and the voxel 
mapping accuracy. One of our past work [19] made use of a deformable 

Fig. 1. Summary of the study design, where A was covered in our past work [19] while B-E were done in this current work.
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anthropomorphic pelvis phantom implanted with markers and demon
strated the feasibility of such an analysis on the hybrid intensity and 
structure based deformable registration in RayStation v10B (RaySearch 
Laboratories AB, Stockholm, Sweden). Using a similar approach, our 
current work set out to examine and compare the performance of three 
additional DIR algorithms, in terms of TRE and its correlation with Dice 
similarity coefficient (DSC), a widely used segmentation metric. This 
metric indicates the overlap of a certain region on two images, and is 
calculated from the contour delineated around the region. The ultimate 
goal of this work is twofold: 1) to identify algorithms with satisfactory 
TRE based on the tolerance set by TG132 [20], implying their suitability 
for dose mapping, and 2) to identify algorithms with a high correlation 
between DSC and TRE, indicating their potential for an easy DDA quality 
assurance (QA).

Methods

Fig. 1 summarises the study design, including key steps done in the 
previous work [19] and current work. The process of phantom fabrica
tion, image acquisition and preprocessing steps have been detailed in 
the previous work [19], and hence will only be described briefly here. A 
deformable anthropomorphic phantom (Fig. 2A), consisting of prostate, 
bladder, rectum and pelvic bone, was fabricated through 3D printing. 
Markers were attached uniformly on the walls of prostate (8), bladder 
(17) and rectum (12) (Fig. 2B), as well as within the prostate (7). By 
simulating deformation of bladder and rectum, five CT scans (pixel 
spacing 0.885 mm, slice thickness 1 mm; example shown in Fig. 2C) 

were obtained from one static and four deformation scenarios. The four 
deformation scenarios comprise CT 2 – 5, where the rectum/bladder 
deformation for CT 2, CT 3, CT 4 and CT 5 were 25/30 ml, 25/60 ml, 50/ 
30 ml and 50/60 ml, respectively. All the CT scans were then imported 
into 3D Slicer [21] to override the CT number according to the mean CT 
number obtained from the actual patient CT scan. This was done by 
creating “segments” in Slicer corresponding to each structure of interest 
(including the organs, organ walls and external region surrounding the 
organs), and subsequently replacing the voxel values within the seg
ments. During this process, all the markers were erased from the images. 
These overridden images (example shown in Fig. 2D) were used as input 
images for the DIR algorithms. On top of RayStation which was studied 
earlier, three additional algorithms were tested: one on commercial 
software: Velocity v4.1 (Varian Medical Systems, Palo Alto, USA), and 
two on open-source software: Slicer [21] and Plastimatch [22]. The DIR 
details differ for each algorithm and will be described separately as 
follows.

Velocity

Velocity uses a B-spline transformation model and mutual informa
tion as the similarity metric. For each DIR, CT 1 was selected as the 
primary image (reference image to be deformed into) and CT 2 - 5 were 
selected in turn as the secondary image (image to be deformed). Five 
options of DIR algorithms available on Velocity were used: 1) Rigid 
Registration (RR) + Deformable Multi Pass (RR included by default), 2) 
Deformable, 3) Extended Deformable Multi Pass, 4) Structure Guided 

Fig. 2. (A) Pelvis phantom consisting of prostate, bladder, rectum and pelvic bone, fabricated via 3D printing. (B) Position of markers attached on the wall of 
prostate, bladder and rectum. (C) Example of phantom CT scan before overriding. The black regions are caused by air trapped within the pelvic bone. (D) Example of 
phantom CT scan after overriding. (E) Example of fused image with original contours and deformed contours.
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Deformable, and 5) Extended Deformable Multi Pass + Structure Guided 
Deformable. For algorithm options 2 to 5, RR was done manually before 
performing DIR.

Slicer

There are several DIR packages in Slicer, including BRAINS, 
Advanced Normalization Tools (ANTs), and Elastix. Both ANTs and 
Elastix are available as extensions upon installation in Slicer, as Slicer
ANTs and SlicerElastix respectively. Since BRAINS and ANTs were both 
developed on the basis of registering brain images [23,24], Elastix was 
chosen to be the main focus of this study. Before the registrations, CT 1 
was assigned as the fixed volume while CT 2 – 5 were successively 
assigned as the moving volumes.

Elastix offers a wide selection of registration presets, and the pa
rameters in each preset are freely customizable by modifying the cor
responding text file in the database folder. For this study, the generic 
preset, which utilizes a B-spline transformation, was used. To obtain a 
diverse range of DIR performances, a number of parameters were varied 
(Table 1A), according to the guidelines stated in the manual. These 
parameters were varied in an “optimization” manner, using the mean 
TRE as the “objective function” to be minimized. In other words, the 
parameter setting which gave the lowest mean TRE would be considered 
the optimal setting. All the parameters were kept to the default settings 
at first, and modified one by one (from left to right on Table 1A), with 
the previous parameter being set to the optimal setting. This not only 
provided multiple DIRs with different mean TRE and DSC values (for 
subsequent correlation analysis), but also allowed for the best possible 
performance of the software.

Plastimatch

Plastimatch provides DIR via Demons, B-spline and landmark-based 
methods. As B-spline method has been tested in Velocity, and the CT 
images are devoid of landmarks (the markers were erased to prevent 
registration bias), only Demons method was examined in this case. 
Similar to SlicerElastix, CT 1 was the fixed image while CT 2 – 5 were the 
moving images. The parameters are also freely editable on the command 
file, and were varied in an “optimization” manner. Table 1B summarizes 
the parameters varied.

DIR Analysis

Upon completion of DIR, TRE can be determined via two means, as 
illustrated in Fig. 3. The first way is by calculating the Euclidean dis
tance between the mapped marker positions (e.g. xʹ in Fig. 3) and the 
marker positions on the fixed image (e.g. xF in Fig. 3). The second way is 
by finding the difference between the deformation vector given by the 
DIR algorithm (xʹ − xM) at the marker coordinate xM and the true 
deformation vector (xF − xM).

For SlicerElastix and Plastimatch, the first way was chosen for the 
analysis. Slicer allows users to apply transform to pre-defined points, 
either after performing registration in the software itself or using im
ported transform, as is the case with Plastimatch (in nrrd format). On the 
other hand, the second approach was used for Velocity. Velocity does 
not support integrated postprocessing of the DVF. Hence, the registra
tion information was exported as Digital Imaging and Communications 
in Medicine (DICOM) format metadata and the DVF was read using 
Matlab R2024a. Interpolation was performed as needed to identify the 
deformation vector at a certain marker coordinate.

For all three software, the DSC and mean TRE of prostate, bladder 
and rectum resulting from each DIR were obtained. For SlicerElastix and 
Plastimatch, contours were drawn for each CT scan on Slicer, and the 
deformed contours were obtained by applying transform to the drawn 
contours (similar to how the mapped marker positions were obtained). 
The original contours on the fixed images and the deformed contours 
were exported in nrrd format. For Velocity, the contours were also 
drawn for each CT using the software itself. The original and deformed 
contours after DIR were exported in DICOM format and converted to 
nrrd format using Slicer. DSC was then computed using Plastimatch, for 
all three software. Fig. 2E shows an example of a fused image with the 
original contours on the fixed image and deformed contours overlaid on 
it.

Subsequently, the mean TRE was calculated from the TRE of all 
markers corresponding to each organ, i.e., 15 markers for prostate, 17 
markers for bladder, and 12 markers for rectum. Pearson correlation 
analysis was done to test the null hypothesis that there is no correlation 
between DSC and mean TRE. A two tailed P-value of 0.05 marked the 
significance of the test.

Similar analysis was also done for prostate exclusively, separating 
the prostate wall (high-contrast region) and inner prostate (low-contrast 
region). This allowed us to specifically examine the results given by a 
homogeneous medium with low contrast, as the level of contrast may 
affect the DIR performance. Out of the 15 markers for prostate, eight 
markers were on the prostate wall and seven were within the prostate.

Classification Performance

To frame the correlation context into a classification task, DSC was 
used to classify the quality of voxel mapping into two classes: positive 
(mean TRE ≤ 3 mm) or negative (mean TRE > 3 mm). Four different 
DSC thresholds were applied, namely 0.75, 0.80, 0.85 and 0.90, as these 
are close to the commonly used standard for an acceptable DSC range 
[20]. Several metrics, including accuracy, precision, recall, F1-score, 
specificity as well as area under the Receiver Operating Characteristic 
curve (AUC), were evaluated. The confidence intervals for AUC were 
calculated via bootstrapping with 2000 bootstrap samples.

Results

The results will be presented individually for the following analysis: 
parameter optimization (for SlicerElastix and Plastimatch only), mean 
marker movement and lowest mean TRE achieved, correlation analysis 
between DSC and mean TRE, and prostate analysis. The results for 
RayStation [19] were included here for comparison.

Table 1 
Parameters varied for (A) the generic preset on SlicerElastix and (B) Plastimatch 
Demons.* signifies the default setting for each parameter. The use of mask for 
SlicerElastix is illustrated in Fig. S1 in the supplementary material.

(A)
Parameters Similarity 

metric
Number of 
resolutions

Final 
grid 
spacing 
(mm)

Maximum 
number of 
iterations

Mask

Values/ 
Options

MI*, NCC 4*, 5, 6 8, 16*, 
32

500*, 
1000, 
1500, 2000

None*, 
around 
water 
region, 
around 
PBR

(B)
Parameters Std 

(mm)
Acc Hmg Filter width 

(voxels)
Maximum 
number of 
iterations

Values/ 
Options

2, 6*, 
10, 14

1*, 3, 
5, 7

1*, 5, 
10

3*, 5, 7, 9, 
11

30*, 100, 200, 
300, 400, 500

Abbreviations: MI – Mutual Information; NCC – Normalized Cross Correlation; 
PBR – Prostate, Bladder and Rectum; Std – standard deviation of smoothing 
kernel; Acc – acceleration, representing the “gain” factor; Hmg – Homogeniza
tion, representing the tradeoff between gradient and image difference.
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Parameter Optimization

SlicerElastix
The upper panel in Table S1 in the supplementary material shows the 

parameters used during each DIR run on SlicerElastix, for the first 
deformation scenario. The results for other deformation scenarios were 
similar, but with a minor change: the second and fourth scenarios gave 
an optimal number of resolutions of 4 instead of 5. The difference in 
mean TRE was nonetheless subtle, within 0.03 mm (comparing Run 4 
and Run 5). This implies that 4 or 5 resolutions is adequate for a B-spline 
transformation of images with voxel size of about 1 mm3 and de
formations of approximately 2.7 mm to 6.4 mm.

The final grid spacing determines the control point spacing of the B- 
spline transformation at the finest resolution level. A lower value allows 
a more flexible deformation, which may improve accuracy but can also 
result in an unrealistic deformation. Therefore, careful tuning is rec
ommended and the optimal value of 16 mm obtained in this study may 
not be applicable to other cases (e.g. images with different voxel size, 
deformation extent, etc).

As expected, NCC was selected as the optimal similarity metric, since 
the DIR input images were of a single modality, i.e. CT scans. Also, a 
higher number of iterations leads to a lower mean TRE, indicating a 
higher voxel mapping accuracy. It is noteworthy that the use of mask 
greatly increases the DIR accuracy, depicted by the considerable 
reduction in mean TRE from Run 11 to Run 13 (Fig. 4A). Decreasing the 
coverage of the mask (from around the water region to around prostate, 
bladder and rectum) limits the registration focus to the region of inter
est, thereby improving the DIR performance.

Plastimatch
The lower panel in Table S1 shows the parameters used during each 

DIR run on Plastimatch, for the first deformation scenario. As Gaussian 
filtering is used for the Demons algorithm, the standard deviation of the 
filter kernel together with the filter width determines the smoothing 

extent on the deformation field. The optimisation returned an optimal 
standard deviation of 2 mm but different optimal filter width for each 
CT. Indeed, the necessary amount of smoothing depends on the image 
intensity distribution and how noisy the deformation field is. It is 
therefore not surprising that the optimal filter width is dependent on the 
nature and source of the data.

Acceleration dictates how fast the algorithm converges, and at the 
same time may affect the robustness of the results. In our study, a larger 
deformation entailed a larger optimal acceleration, which could indicate 
a possible causal relationship. However, as limited information was 
provided by Plastimatch on this parameter, our deduction is inconclu
sive and the effect of other factors could not be ruled out.

As stated in the image registration guidebook by Plastimatch [25], 
the homogenization value should increase with voxel sizes, going down 
to about 1 for 1 mm voxels. This agrees with our results, where 1 is the 
optimal homogenization for our CT images with voxel size of 0.885×

0.885× 1.0mm. The mean TRE generally decreased with more iterations 
(with minimal fluctuations), in line with our expectation. When 
comparing Runs 14 to 18 in Fig. 4B, it is observed that the mean TRE 
plateaued more quickly for smaller deformation scenarios (i.e. CT 2 and 
CT 3).

Mean marker movement and lowest mean TRE achieved

Table 2 shows the mean marker movements and the lowest mean 
TRE given by each software (including RayStation) in different defor
mation scenarios. Comparing across the software, it is clear that RayS
tation achieved the best performance, with the mean TREs reduced to 
about 50% of the corresponding mean marker movements. Conversely, 
Velocity had the largest values for all scenarios, and the algorithm op
tion giving the lowest mean TRE varied according to the deformation 
scenario (Fig. 4C).

Fig. 3. Schematic showing two ways of obtaining target registration error (TRE) for a marker: 1) by calculating the Euclidean distance between the mapped marker 
position x ʹ and the marker position on the fixed image xF, 2) by finding the difference between the deformation vector given by the DIR algorithm at the marker 
coordinate (green dashed arrow) and the true deformation vector (blue solid arrow). xM represents the original marker position on the moving image.
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Correlation analysis between DSC and mean TRE

The relationship between DSC and mean TRE of each organ, resulting 
from different deformation scenarios and DIRs, were plotted for each 
software (including RayStation) as shown in Fig. 5. Generally, it can be 
seen that the mean TRE displayed a decreasing trend with increasing 
DSC. For Velocity and Plastimatch, however, the data points were more 
dispersed above or below the regression lines. This suggests weaker 
correlations overall, which was indeed confirmed by the Pearson cor
relation tests (Table 3). The negative correlation strength ranged from 
moderate ( − 0.60 < r ≤ − 0.40) to very strong (r ≤ − 0.80) for Velocity, 

and strong ( − 0.80 < r ≤ − 0.60) to very strong for Plastimatch. In 
contrast, both RayStation and SlicerElastix achieved very strong nega
tive correlation between the two metrics for all the organs/combination 
considered.

Prostate Analysis

Similar to what has been discussed in Section 3.2, RayStation per
formed the best in terms of voxel mapping accuracy (Table 4). For the 
entire range of prostate marker movements (up to approximately 8 mm), 
RayStation gave mean TREs that were close to or lower than 2 mm.

Interestingly, the homogeneous medium within the prostate did not 
give rise to a terribly erroneous voxel mapping. In fact, a quick evalu
ation of the error percentages relative to the marker movements would 
reveal that most of the software mapped the markers within the prostate 
even more accurately than those at the prostate wall.

Pearson correlation tests done between DSC and mean TRE, sepa
rately for markers within the prostate and on the prostate wall, showed 
very strong negative correlation for all the software tested, with the 
exception of one case; for markers within the prostate, DIR using Ve
locity yielded a comparatively lower correlation strength between DSC 
and mean TRE (Table 5). This indicates that among all, Velocity is most 
prone to mapping voxels within a homogeneous medium independently 
of the contour region with higher contrast.

Classification Performance

The accuracy, precision, recall, F1-score, specificity and AUC were 
reported in Table 6. The results marked with ‘-’ represent cases with no 
true positive, false positive or false negative. Generally, a higher DSC 
threshold resulted in a better classification performance. It can also be 
seen that SlicerElastix achieved the best performance overall. For all 
three organs, the scores at their corresponding best DSC threshold were 
at least 0.70, with most above 0.80, except for the precision and F1-score 
of the bladder. Meanwhile, the AUCs were all close to 1. This agrees with 
the earlier finding where SlicerElastix displayed the highest correlation 
between DSC and mean TRE, thus allowing a more accurate classifica
tion based on the DSC value.

Discussion

Through this study, we assessed and compared four DIR algorithms 
by quantifying the mean TREs and their correlation with DSC. These 
analyses were done for bladder and rectum (important organs at risk in 
prostate RT), and one specifically focused on prostate, to investigate the 
DIR performance in both high-contrast and low-contrast regions.

We would like to highlight a few findings that are congruent with 
those in the previous work [19]: 1) for all software, the lowest mean 
TREs achieved generally had a larger magnitude with larger mean 
marker movements (Table 2), implying the challenges associated with 

Fig. 4. Mean target registration error (TRE) obtained from each DIR run/al
gorithm option on (A) SlicerElastix, (B) Plastimatch and (C) Velocity, for all 
four deformation scenarios. The dashed lines represent the mean marker 
movement while the black circles mark out the lowest mean TRE achieved in 
each scenario (corresponding to data tabulated in Table S1).

Table 2 
Mean marker movement and lowest mean target registration error (TRE) ach
ieved by each DIR software for all four deformation scenarios. The mean marker 
movements for Velocity are reported behind the slash symbol(/).

CT Mean marker 
movement 
(mm)

Lowest mean TRE achieved (mm)
RayStation Velocity SlicerElastix Plastimatch

CT 
2

2.74 ± 0.24/ 
2.97 ± 0.23

1.48 ± 0.16 2.77 ±
0.23

1.65 ± 0.15 1.87 ± 0.14

CT 
3

3.62 ± 0.28/ 
3.80 ± 0.27

2.03 ± 0.21 3.42 ±
0.25

2.30 ± 0.18 2.33 ± 0.20

CT 
4

6.22 ± 0.53/ 
6.27 ± 0.51

2.61 ± 0.32 4.67 ±
0.31

3.94 ± 0.32 3.70 ± 0.34

CT 
5

6.41 ± 0.47/ 
6.45 ± 0.47

3.06 ± 0.31 4.16 ±
0.33

3.88 ± 0.36 3.61 ± 0.36
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larger deformation scenarios, 2) the correlation between DSC and mean 
TRE for bladder was relatively weaker compared to prostate and rectum, 
regardless of the DIR software used (Table 3).

Elaborating on the second point, it is noticed that blue points 

(representing bladder) in Fig. 5 were scattered above the regression lines 
at DSC>0.90. Despite the high DSCs, the mean TREs ranged up to 5 or 6 
mm. Bearing in mind the volume dependence of DSC as reported in past 
studies [26,27], this observation once again demonstrated the caveat 
with respect to larger organs, where a high DSC does not necessarily 
guarantee a high voxel mapping accuracy. This could also explain the 
low precision for bladder (Table 6), observed across all the software.

Among all the tested software, SlicerElastix manifested a remarkably 
strong correlation between DSC and mean TRE for all organs (Table 3). 
All the correlation coefficients were lower than -0.90, indicating its 
potential for easy evaluation of voxel mapping accuracy through seg
mentation metrics. Although the correlations were weaker for the 
remaining software, all but one of the recorded values lay in the strong 
to very strong correlation range. This finding may disagree with a couple 
of past studies [28,29], but could be attributed to the regularization 
factor which has been accounted for in all the tested algorithms. RayS
tation uses an objective function consisting of an image similarity term, 
grid regularization terms, and anatomical penalty terms. Velocity im
poses constrained regularization to prevent abnormal voxel behaviours 
such as jumping and folding. SlicerElastix allows the tuning of the B- 
spline model final grid spacing, to attain a balance between the flexi
bility and physical plausibility of the deformation. Lastly, the Demons 
algorithm implemented on Plastimatch includes a Gaussian filter to 
smooth the resulting DVF.

Despite having considered a regularization factor, Velocity displayed 
the lowest agreement between DSC and mean TRE (Table 3). This, we 
speculate, could be due to the inherent regularization not being equally 

Fig. 5. Plots of mean target registration error (TRE) vs Dice similarity coefficient (DSC) for prostate, bladder and rectum, using DIR on (A) RayStation, (B) Velocity, 
(C) SlicerElastix, and (D) Plastimatch. The red, blue, and green dashed lines are the regression lines for prostate, bladder, and rectum, respectively, while the black 
dashed line represents the regression line for all the data points.

Table 3 
Pearson correlation coefficient (r) between DSC and mean TRE for prostate, 
bladder, rectum, and all three organs together, for each DIR software. The P- 
values for all the reported r’s were <0.01.

RayStation Velocity SlicerElastix Plastimatch

Prostate -0.977 -0.836 -0.987 -0.874
Bladder -0.829 -0.668 -0.948 -0.786
Rectum -0.936 -0.740 -0.978 -0.880
All -0.835 -0.503 -0.901 -0.761

Table 4 
Mean marker movement and lowest mean target registration error (TRE) ach
ieved by each DIR software for all four deformation scenarios, quantified using 
markers within the prostate (upper panel) and on the prostate wall (lower 
panel). The mean marker movements for Velocity are reported behind the slash 
symbol(/).

CT Mean marker movement (mm) Lowest mean TRE achieved (mm)
RS VL SE PT

CT 2 3.00 ± 0.12/2.94 ± 0.08 0.85 2.20 1.24 1.64
CT 3 2.82 ± 0.24/3.19 ± 0.32 1.41 3.09 1.50 2.02
CT 4 7.46 ± 0.48/7.58 ± 0.50 1.43 3.26 2.72 3.38
CT 5 6.92 ± 0.25/7.17 ± 0.25 1.51 2.89 2.37 2.73

CT Mean marker movement (mm) Lowest mean TRE achieved (mm)
RS VL SC PT

CT 2 3.00 ± 0.10/3.06 ± 0.11 1.17 2.83 1.80 1.92
CT 3 3.36 ± 0.34/3.65 ± 0.33 1.51 3.55 2.24 2.49
CT 4 7.98 ± 0.64/8.01 ± 0.58 2.01 5.57 5.04 4.55
CT 5 7.55 ± 0.46/7.46 ± 0.56 2.03 4.99 4.21 3.58

Abbreviations: RS – RayStation; VL – Velocity; SE – SlicerElastix; PT – 
Plastimatch.

Table 5 
Pearson correlation coefficient (r) between DSC and mean TRE of markers 
within the prostate (labelled as IN) and on the prostate wall (labelled as OUT), 
for each DIR software. The P-values for all the reported r’s were <0.01.

RayStation Velocity SlicerElastix Plastimatch

IN -0.983 -0.774 -0.977 -0.893
OUT -0.952 -0.858 -0.987 -0.854
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effective in all clinical scenarios. Introducing a regularization function 
which allows user tuning may prove useful in this case. Besides, the 
external processing and interpolation of DVF might have induced un
certainties on the mapped marker positions, and hence the TREs for 
Velocity.

As Velocity does not allow import of external marker positions, the 
marker positions were redefined on the Velocity interface, causing the 
mean marker movements recorded to be slightly different (Table 2, 
Table 4). This variability in defining marker positions represents a 
source of uncertainty arising from random human errors. Nonetheless, 
this uncertainty should have been taken into account by the standard 
error of the mean values, as the error bars for the two sets of values are 
seen to be overlapping.

Benchmarking the lowest mean TREs achieved against the 3 mm 
upper limit recommended by TG132 [20], it is observed that within the 
mean marker movement range of 2.74 – 6.41 mm, only RayStation 
managed to satisfy this criterion (Table 2). This uncovered the potential 
of RayStation being a more reliable tool for performing DDA, as 
compared to other tested software. Within the homogeneous medium of 
the inner prostate, RayStation and SlicerElastix were able to map the 
markers with an accuracy of less than 3 mm, while the largest mean 
TREs for Velocity and Plastimatch were slightly above 3 mm (Table 4).

A past study by Kirby et al. [29] using a two-dimensional deformable 
pelvic phantom reported a decent Velocity performance, where it ach
ieved the lowest percentage of registration error above 3 mm and the 
lowest mean error. In contrast, our current study found that Velocity had 
the lowest voxel mapping accuracy (highest mean TRE for all defor
mation scenarios) among the tested software. This could presumably be 
caused by the way of error quantification, as the past study took into 
account the whole pelvic region, while our study localized the evalua
tion to the three organs of interest, i.e. prostate, bladder and rectum. In 
fact, taking a close look at the results of another related study by Nie 
et al. [30] would reveal that the percentage of larger errors (4 mm and 
above) were higher in regional analysis (which focused on localized 
evaluation) compared to global analysis.

Our findings on the performance of various commercial and open- 
source DIR algorithms, as quantified by TRE and DSC, contribute 
directly to addressing the critical issue of DIR uncertainties in radio
therapy. As highlighted by Nenoff et al. [31], quantifying these 

uncertainties is paramount, yet there is currently no universal consensus 
within the radiotherapy community on how to effectively do so or to 
establish thresholds for acceptable DIR results. Our phantom-based 
approach offers a standardized method for evaluating algorithm per
formance under controlled conditions, thereby providing valuable in
sights into the inherent variability and potential inaccuracies of different 
DIR solutions. The observed discrepancies in TRE and DSC among the 
algorithms underscore the need for careful commissioning and QA of 
DIR systems, echoing the recommendations made by Nenoff et al. [31] 
for handling uncertainties.

Due to the overriding of CT numbers, it should be acknowledged that 
the image contrast could be either higher (e.g. at the organ boundary 
region) or lower (e.g. within the prostate) than actual patient data. That 
being said, our study had allowed investigation into these two extreme 
conditions, thus we believe that these results would still offer useful 
insights into the DIR performance of various algorithms given different 
image quality and contrast.

It is important to note that the results presented here are solely 
applicable to the pelvic site; for other cancer sites with different image 
heterogeneity and deformation nature, the DIR software performance 
may vary, hence warranting further study. In addition, our current study 
only covered two commercial and two open-source software. Further 
research could be done on other commonly used commercial software, 
including Eclipse (Varian Medical Systems, Palo Alto, USA) and MIM 
(MIM Software Inc., OH, USA), to facilitate the clinical uptake of DDA. It 
may also be worthwhile to consider these findings within the rapidly 
evolving landscape of medical image registration. Recent breakthroughs 
in deep learning have introduced novel solutions for both affine [32] 
and deformable registration [33] tasks, sometimes surpassing conven
tional methods, particularly in terms of efficiency and generalizability 
across different anatomical sites and imaging modalities. Future 
research could therefore benefit from directly comparing the perfor
mance of the traditional DIR algorithms evaluated in this study against 
these state-of-the-art deep learning architectures using similar phantom- 
based validation methodologies. Such comparative studies would be 
crucial in guiding the selection of optimal registration strategies for 
various clinical applications and in harnessing the full potential of AI in 
radiation oncology.

Table 6 
Evaluation metric scores, stratified by software and organ, for classification task using DSC to determine whether the mean TRE exceeded 3 mm (positive) or not 
(negative). The 95% confidence interval for each AUC is shown in the bracket.

RayStation Velocity SlicerElastix Plastimatch
DSC Threshold 0.75 0.8 0.85 0.9 0.75 0.8 0.85 0.9 0.75 0.8 0.85 0.9 0.75 0.8 0.85 0.9

P Acc 0.83 0.89 0.89 0.94 0.45 0.65 0.80 0.75 0.71 0.73 0.79 0.87 0.49 0.56 0.64 0.85

Pre 0.81 0.87 0.87 0.96 0.39 0.50 0.67 1.00 0.52 0.53 0.59 0.70 0.49 0.52 0.57 0.76
Rec 1.00 1.00 1.00 0.96 1.00 1.00 0.86 0.29 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F1 0.90 0.93 0.93 0.96 0.56 0.67 0.75 0.44 0.68 0.70 0.74 0.82 0.65 0.69 0.73 0.86
Spe 0.40 0.60 0.60 0.90 0.15 0.46 0.77 1.00 0.58 0.61 0.69 0.81 0 0.14 0.30 0.70
AUC 0.98 (0.94 – 1.00) 0.84 (0.60 – 1.00) 0.96 (0.91 – 0.99) 0.90 (0.82 – 0.96)

B Acc 0.25 0.36 0.47 0.67 0 0.10 0.15 0.70 0.06 0.42 0.48 0.81 0.32 0.32 0.47 0.60
Pre 0.25 0.28 0.32 0.43 0 0 0 0 0.06 0.09 0.10 0.23 0.32 0.32 0.38 0.44
Rec 1.00 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F1 0.40 0.44 0.49 0.60 - - - - 0.11 0.17 0.18 0.38 0.48 0.48 0.55 0.61
Spe 0 0.15 0.30 0.56 0 0.10 0.15 0.70 0 0.39 0.45 0.80 0 0 0.22 0.41
AUC 0.89 (0.77 – 0.98) - 1.00 (1.00 – 1.00) 0.91 (0.84 – 0.97)

R Acc 0.61 0.86 0.97 0.97 0.20 0.55 0.75 0.80 0.35 0.73 0.98 0.94 0.64 0.64 0.79 0.85
Pre 0.61 0.81 0.96 1.00 0.20 0.31 0.40 - 0.31 0.52 0.94 1.00 0.64 0.64 0.75 0.83
Rec 1.00 1.00 1.00 0.95 1.00 1.00 0.50 0 1.00 1.00 1.00 0.80 1.00 1.00 1.00 0.96
F1 0.76 0.90 0.98 0.98 0.33 0.47 0.44 - 0.47 0.68 0.97 0.89 0.78 0.78 0.86 0.89
Spe 0 0.64 0.93 1.00 0 0.44 0.81 1.00 0.08 0.62 0.97 1.00 0 0 0.42 0.65
AUC 1.00 (1.00 – 1.00) 0.83 (0.61 – 1.00) 1.00 (1.00 – 1.00) 0.98 (0.94 – 1.00)

Abbreviations: P – Prostate; B – Bladder; R – Rectum; Acc – Accuracy; Pre – Precision; Rec – Recall; F1 – F1-score; Spe – Specificity; AUC – Area under the Receiver 
Operating Characteristic curve.
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Conclusion

In this work, we quantified and compared the voxel mapping accu
racy and its correlation with DSC for four DIR software. Among all, 
RayStation achieved the highest voxel mapping accuracy, indicating the 
great promise it holds for an accurate dose mapping. For SlicerElastix, 
DSC was found to be an excellent indicator of voxel mapping accuracy. 
This means that a segmentation metric method for DDA QA is sufficient 
for this software.
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